Why AI needs a physical body to reach its full potential

Artificial intelligence seems to be making enormous advances. It has become the key technology behind self-driving cars, automatic translation systems, speech and textual analysis, image processing and all kinds of diagnosis and recognition systems. In many cases, AI can surpass the best human performance levels at specific tasks.

We are witnessing the emergence of a new commercial industry with intense activity, massive financial investment, and tremendous potential. It would seem that there are no areas that are beyond improvement by AI – no tasks that cannot be automated, no problems that can’t at least be helped by an AI application. But is this strictly true?

Theoretical studies of computation have shown there are some things that are not computable. Alan Turing, the brilliant mathematician and code breaker, proved that some computations might never finish (while others would take years or even centuries).

For example, we can easily compute a few moves ahead in a game of chess, but to examine all the moves to the end of a typical 80-move chess game is completely impractical. Even using one of the world’s fastest supercomputers, running at over one hundred thousand trillion operations per second, it would take over a year to get just a tiny portion of the chess space explored. This is also known as the scaling-up problem.

Early AI research often produced good results on small numbers of combinations of a problem (like noughts and crosses, known as toy problems) but would not scale up to larger ones like chess (real-life problems). Fortunately, modern AI has developed alternative ways of dealing with such problems. These can beat the world’s best human players, not by looking at all possible moves ahead, but by looking a lot further than the human mind can manage. It does this by using methods involving approximations, probability estimates, large neural networks and other machine-learning techniques.


But these are really problems of computer science, not artificial intelligence. Are there any fundamental limitations on AI performing intelligently? A serious issue becomes clear when we consider human-computer interaction. It is widely expected that future AI systems will communicate with and assist humans in friendly, fully interactive, social exchanges.

Theory of mind

Of course, we already have primitive versions of such systems. But audio-command systems and call-centre-style script-processing just pretend to be conversations. What is needed are proper social interactions, involving free-flowing conversations over the long term during which AI systems remember the person and their past conversations. AI will have to understand intentions and beliefs and the meaning of what people are saying.

This requires what is known in psychology as a theory of mind – an understanding that the person you are engaged with has a way of thinking, and roughly sees the world in the same way as you do. So when someone talks about their experiences, you can identify and appreciate what they describe and how it relates to yourself, giving meaning to their comments.

We also observe the person’s actions and infer their intentions and preferences from gestures and signals. So when Sally says, “I think that John likes Zoe but thinks that Zoe finds him unsuitable”, we know that Sally has a first-order model of herself (her own thoughts), a second-order model of John’s thoughts, and a third-order model of what John thinks Zoe thinks. Notice that we need to have similar experiences of life to understand this.

Physical learning

It is clear that all this social interaction only makes sense to the parties involved if they have a “sense of self” and can similarly maintain a model of the self of the other agent. In order to understand someone else, it is necessary to know oneself. An AI “self model” should include a subjective perspective, involving how its body operates (for example, its visual viewpoint depends upon the physical location of its eyes), a detailed map of its own space, and a repertoire of well understood skills and actions.

That means a physical body is required in order to ground the sense of self in concrete data and experience. When an action by one agent is observed by another, it can be mutually understood through the shared components of experience. This means social AI will need to be realised in robots with bodies. How could a software box have a subjective viewpoint of, and in, the physical world, the world that humans inhabit? Our conversational systems must be not just embedded but embodied.

A designer can’t effectively build a software sense-of-self for a robot. If a subjective viewpoint were designed in from the outset, it would be the designer’s own viewpoint, and it would also need to learn and cope with experiences unknown to the designer. So what we need to design is a framework that supports the learning of a subjective viewpoint.

Fortunately, there is a way out of these difficulties. Humans face exactly the same problems but they don’t solve them all at once. The first years of infancy display incredible developmental progress, during which we learn how to control our bodies and how to perceive and experience objects, agents and environments. We also learn how to act and the consequences of acts and interactions.

Research in the new field of developmental robotics is now exploring how robots can learn from scratch, like infants. The first stages involve discovering the properties of passive objects and the “physics” of the robot’s world. Later on, robots note and copy interactions with agents (carers), followed by gradually more complex modelling of the self in context. In my new book, I explore the experiments in this field.

So while disembodied AI definitely has a fundamental limitation, future research with robot bodies may one day help create lasting, empathetic, social interactions between AI and humans.

Mark Lee, Emeritus Professor in Computer Science, Aberystwyth University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Subscribe to the M&G

These are unprecedented times, and the role of media to tell and record the story of South Africa as it develops is more important than ever.

The Mail & Guardian is a proud news publisher with roots stretching back 35 years, and we’ve survived right from day one thanks to the support of readers who value fiercely independent journalism that is beholden to no-one. To help us continue for another 35 future years with the same proud values, please consider taking out a subscription.

Mark Lee
Emeritus professor in computer science, Aberystwyth University

Related stories

Advertising

Subscribers only

How lottery execs received dubious payments through a private company

The National Lottery Commission is being investigated by the SIU for alleged corruption and maladministration, including suspicious payments made to senior NLC employees between 2016 and 2017

Pandemic hobbles learners’ futures

South African schools have yet to open for the 2021 academic year and experts are sounding the alarm over lost learning time, especially in the crucial grades one and 12

More top stories

Egypt, Seychelles get first jabs

The two countries have rolled out China’s Sinopharm vaccine, but data issues are likely to keep some countries from doing the same

Fashion’s future is bricks and clicks

Lockdown forced reluctant South African clothing retail stores online: although foot traffic in brick-and-mortar stores remains important in a mall culture like ours, the secret to success is innovation

What the Biden presidency may mean for Africa

The new US administration has an interest and much expertise in Africa. But given the scale of the priorities the administration faces, Africa must not expect to feature too prominently

Zuma, Zondo play the waiting game

The former president says he will talk once the courts have ruled, but the head of the state capture inquiry appears resigned to letting the clock run out as the commission's deadline nears
Advertising

press releases

Loading latest Press Releases…